ASP Tutorial
	
	In our ASP tutorial you will learn about ASP, and how to execute scripts on your server.
You will see that ASP is a powerful tool for making dynamic and interactive Web pages.

Active Server Pages. A specification that enables Web pages to be dynamically created using HTML, scripts, and reusable ActiveX server components.

A dynamically generated web page, generally using ActiveX scripting. When a browser or a search engine spider requests an ASP page from a server, the server generates the web page with HTML code and gives it to the browser or spider.

The abbreviation ASP has several meanings: * Active Server Pages - which is a web server extension by Microsoft.* Advanced Simple Profile - a profile used in digital video codecs, such as XviD and Nero Digital* amnesic shellfish poison - a marine biotoxin and neurotoxin (aka domoic acid).* Application service provider - a business that serves clients with computer application needs (compare to internet service provider or ISP)

Active Server Pages. The default scripting language used for writing ASP is VBScript, although you can use other scripting languages like JScript. Also see PSP, JSP and JSP. Application Service Provider. A provider of applications through the internet.

ASP is Microsoft's server-side scripting technology. An Active Server Page has an .asp extension and it mixes HTML and scripting code that can be written in VBScript or JScript. ASP is distributed with Microsoft's IIS web server, so most host using IIS will also offer ASP for dynamic web programming. ASP.NET is the next version of ASP. Other popular server-side scripting languages are Perl, PHP, ColdFusion, TCL, Python, and JSP.

Lesson 1: Introduction to ASP

An ASP file can contain text, HTML tags and scripts. Scripts in an ASP file are executed on the server

What you should already know
Before you continue you should have some basic understanding of the following:
· HTML / XHTML

· A scripting language like JavaScript or VBScript

If you want to study these subjects first, find the tutorials on our Home page.

What is ASP?
· ASP stands for Active Server Pages

· ASP is a program that runs inside IIS

· IIS stands for Internet Information Services

· IIS comes as a free component with Windows 2000

· IIS is also a part of the Windows NT 4.0 Option Pack

· The Option Pack can be downloaded from Microsoft

· PWS is a smaller - but fully functional - version of IIS

· PWS can be found on your Windows 95/98 CD

ASP Compatibility
· ASP is a Microsoft Technology

· To run IIS you must have Windows NT 4.0 or later

· To run PWS you must have Windows 95 or later

· ChiliASP is a technology that runs ASP without Windows OS

· InstantASP is another technology that runs ASP without Windows

What is an ASP File?
· An ASP file is just the same as an HTML file

· An ASP file can contain text, HTML, XML, and scripts

· Scripts in an ASP file are executed on the server

· An ASP file has the file extension ".asp"

How Does ASP Differ from HTML?
· When a browser requests an HTML file, the server returns the file

· When a browser requests an ASP file, IIS passes the request to the ASP engine. The ASP engine reads the ASP file, line by line, and executes the scripts in the file. Finally, the ASP file is returned to the browser as plain HTML

What can ASP do for you?
· Dynamically edit, change or add any content of a Web page

· Respond to user queries or data submitted from HTML forms

· Access any data or databases and return the results to a browser

· Customize a Web page to make it more useful for individual users

· The advantages of using ASP instead of CGI and Perl, are those of simplicity and speed

· Provides security since your ASP code can not be viewed from the browser

· Since ASP files are returned as plain HTML, they can be viewed in any browser

· Clever ASP programming can minimize the network traffic

Lesson 2: Run ASP on Your PC

You can run ASP on your own PC without an external server. To do that, you must install Microsoft's Personal Web Server (PWS) or Internet Information Services (IIS) on your PC.

How to Run ASP on your own PC
You can run ASP on your own PC without an external server. To do that, you must install Microsoft's Personal Web Server (PWS) or Internet Information Services (IIS) on your PC.
If you are serious about using ASP, you should have at least Windows 98, Second Edition.
If you are really serious about using ASP, you should go for Windows 2000.

How to install PWS and run ASP on Windows 95
Personal Web Server (PWS) is not shipped with Windows 95 !!
To run ASP on Windows 95, you will have to download "Windows NT 4.0 Option Pack" from Microsoft.

How to install PWS and run ASP on Windows NT
Personal Web Server (PWS) is not shipped with Windows NT !!
To run ASP on Windows NT, you will have to download "Windows NT 4.0 Option Pack" from Microsoft.

How to install PWS and run ASP on Windows 98
1. Open the Add-ons folder on your Windows98 CD, find the PWS folder and run the setup.exe file.

2. An Inetpub folder will be created on your harddrive. Open it and find the wwwroot folder.

3. Create a new folder, like "MyWeb", under wwwroot.

4. Use a text editor to write some ASP code, save the file as "test1.asp" in the "MyWeb" folder.

5. Make sure your Web server is running - The installation program has added a new icon on your task bar (this is the PWS symbol). Click on the icon and press the Start button in the window that appears.

6. Open your browser and type in "http://localhost/MyWeb/test1.asp", to view your first ASP page.

How to install PWS and run ASP on Windows ME
Personal Web Server (PWS) is not included with Windows Me !!
Read article from Microsoft
A workaround!

How to install IIS and run ASP on Windows 2000
1. From your Start Button, go to Settings, and Control Panel

2. In the Control Panel window select Add/Remove Programs

3. In the Add/Remove window select Add/Remove Windows Components

4. In the Wizard window check Internet Information Services, click OK

5. An Inetpub folder will be created on your harddrive

6. Open the Inetpub folder, and find a folder named wwwroot
7. Create a new folder, like "MyWeb", under wwwroot.

8. Use a text editor to write some ASP code, save the file as "test1.asp" in the "MyWeb" folder

9. Make sure your Web server is running - The installation program has added a new icon on your task bar (this is the IIS symbol). Click on the icon and press the Start button in the window that appears.

10. Open your browser and type in "http://localhost/MyWeb/test1.asp", to view your first ASP page

How to install IIS and run ASP on Windows XP Professional
Note: You cannot run ASP on Windows XP Home Edition.
1. Insert the Windows XP Professional CD-Rom into your CD-Rom Drive

2. From your Start Button, go to Settings, and Control Panel

3. In the Control Panel window select Add/Remove Programs

4. In the Add/Remove window select Add/Remove Windows Components

5. In the Wizard window check Internet Information Services, click OK

6. An Inetpub folder will be created on your harddrive

7. Open the Inetpub folder, and find a folder named wwwroot
8. Create a new folder, like "MyWeb", under wwwroot.

9. Use a text editor to write some ASP code, save the file as "test1.asp" in the "MyWeb" folder

10. Make sure your Web server is running - its status can be checked by going into the Control Panel, then Administrative Tools, and double-click the "IIS Manager" icon

11. Open your browser and type in "http://localhost/MyWeb/test1.asp", to view your first ASP page

How to install IIS and run ASP on Windows Server 2003 (Windows .NET Server)
1. When you start the Windows Server 2003, you should see the Manage Your Server wizard

2. If the wizard is not displayed, go to Administrative Tools, and select Manage Your Server

3. In the wizard, click Add or Remove a Role, click Next

4. Select Custom Configuration, click Next

5. Select Application Server role, click Next

6. Select Enable ASP.NET, click Next

7. Now, the wizard may ask for the Server 2003 CD. Insert the CD and let it run until it is finished, then click the Finish button

8. The wizard should now show the Application Server role installed

9. Click on Manage This Application Server to bring up the Application Server Management Console (MMC)

10. Expand the Internet Information Services (IIS) Manager, then expand your server, and then the Web Sites folder

11. You should see the Default Web Site, and it should not say (Stopped)

12. IIS is running!

13. In the Internet Information Services (IIS) Manager click on the Web Service Extensions folder

14. Here you will see that Active Server Pages are Prohibited (this is the default configuration of IIS 6)

15. Highlight Active Server Pages and click the Allow button

16. ASP is now active!

Lesson 3: ASP Syntax

You cannot view the ASP source code by selecting "View source" in a browser, you will only see the output from the ASP file, which is plain HTML. This is because the scripts are executed on the server before the result is sent back to the browser.
In our ASP tutorial, every example displays the hidden ASP source code. This will make it easier for you to understand how it works.

Examples
Write text with ASP
How to write some text with ASP.
Add some HTML to the text
How to format the text with HTML tags.

The Basic Syntax Rule
An ASP file normally contains HTML tags, just like an HTML file. However, an ASP file can also contain server scripts, surrounded by the delimiters <% and %>. Server scripts are executed on the server, and can contain any expressions, statements, procedures, or operators valid for the scripting language you prefer to use.

The Response Object
The Write method of the ASP Response Object is used to send content to the browser. For example, the following statement sends the text "Hello World" to the browser:
	<%

response.write("Hello World!")

%>

VBScript
You may use different scripting languages in ASP files. However, the default scripting language is VBScript:
	<html>

<body>

<%

response.write("Hello World!")

%>
</body>

</html>

The example above writes "Hello World!" into the body of the document.

JavaScript
To set JavaScript as the default scripting language for a particular page you must insert a language specification at the top of the page:
	<%@ language="javascript"%>

<html>

<body>

<%

Response.Write("Hello World!")

%>
</body>

</html>

Note: Unlike VBScript - JavaScript is case sensitive. You will have to write your ASP code with uppercase letters and lowercase letters when the language requires it.

Other Scripting Languages
ASP is shipped with VBScript and JScript (Microsoft's implementation of JavaScript). If you want to script in another language, like PERL, REXX, or Python, you will have to install script engines for them.
Important: Because the scripts are executed on the server, the browser that displays the ASP file does not need to support scripting at all!
Lesson 4: Functions

A variable is used to store information.
If the variable is declared outside a procedure it can be changed by any script in the ASP file. If the variable is declared inside a procedure, it is created and destroyed every time the procedure is executed.

Examples
Declare a variable
Variables are used to store information. This example demonstrates how to declare a variable, assign a value to it, and use the value in a text.

<%
function countPage(aFilename)
dim curPage
dim curPageIndex
dim arrPageCounter
dim arrPages
dim arrCounters
dim UserString
dim numberOfPages
dim i
const PAGE_ARRAY=0
const COUNT_ARRAY=1
' get the name of the current page
curPage = Request.ServerVariables("URL")
'Response.Write curPage & "
"
' lock the Application object
Application.Lock
if isArray(Application("PageCounter")) then
' the arrPageCounter variable is an array of
' arrays--one array for the pages and a
' parallel array for the count
arrPageCounter = Application("PageCounter")
arrPages = arrPageCounter(PAGE_ARRAY)
arrCounters = arrPageCounter(COUNT_ARRAY)
numberOfPages = ubound(arrPages) + 1
'Response.write "Number of Pages=" & numberOfPages & "
"
curPageIndex = -1
for i = 0 to numberOfPages - 1
if strcomp(arrPages(i), curPage, vbTextCompare) = 0 then
'response.write "Found page at index " & i & "
"
curPageIndex = i
Exit for
end if
next
else
'response.write "Initializing Arrays
"
' create the arrays
arrPages = Array(curPage)
arrCounters = Array(0)
curPageIndex = 0
numberOfPages=1
end if

' check to see if the page was found
' curPageIndex will be -1 if the page was not found
if curPageIndex < 0 then
' add the page
redim preserve arrPages(numberOfPages)
arrPages(numberOfPages) = curPage
redim preserve arrCounters(numberOfPages)
arrCounters(numberOfPages) = 0
curPageIndex = numberOfPages
numberOfPages = numberOfPages + 1
end if
' now retrieve the user string
' the user string contains one character for each page
' in the arrPages array. The character is a "1" if the user
' has seen that page during this session, otherwise it's a "0"
'Response.write Session.SessionID & "
"
if not isEmpty(Session(cstr(Session.SessionID))) then
UserString = cstr(Session(cstr(Session.SessionID)))
' have any pages been added?
if len(UserString) < numberOfPages then
UserString = UserString & string(numberOfPages - len(UserString), "0")
elseif len(UserString) > numberOfPages then
' this is an error, because there's no current way to remove a
' page from the page array
err.raise 50000, "counter.inc", "Length of UserString exceeds the number of items in the page array."
end if
else
UserString = string(numberOfPages,"0")
end if

'response.write UserString & "
"
'response.write "CurPageIndex=" & curpageindex & "
"
'response.write "arrCounters(CurPageIndex)=" & arrCounters(CurPageIndex) & "
"
'response.write cstr(mid(UserString, curPageIndex + 1, 1)) & "
"

' has the user seen this page?
if mid(UserString, curPageIndex + 1, 1) = "1" then
' user has seen this page
else
arrCounters(curPageIndex) = arrCounters(curPageIndex) + 1
UserString = left(UserString, curPageIndex) & "1" & mid(UserString, curPageIndex + 2)
end if
'response.write cstr(UserString) & "
"

' update the user string
Session(cstr(Session.SessionID)) = UserString
' update the Application variable
arrPageCounter = Array(arrPages, arrCounters)
Application("PageCounter") = arrPageCounter
Application.Unlock
Response.Write "This page has been visited by " & arrCounters(curPageIndex) & " users."
End Function
call countPage("c:\inetpub\masteringasp\chapter11\ch11project2.txt")
%>

Declare an array
Arrays are used to store a series of related data items. This example demonstrates how to declare an array that stores names.
Loop through the HTML headers
How to loop through the six headers in HTML.
Time-based greeting using VBScript
This example will display a different message to the user depending on the time on the server.
Time-based greeting using JavaScript
This example is the same as the one above, but the syntax is different.

Lifetime of Variables
A variable declared outside a procedure can be accessed and changed by any script in the ASP file.
A variable declared inside a procedure is created and destroyed every time the procedure is executed. No scripts outside the procedure can access or change the variable.
To declare variables accessible to more than one ASP file, declare them as session variables or application variables.
Session Variables
Session variables are used to store information about ONE single user, and are available to all pages in one application. Typically information stored in session variables are name, id, and preferences.
Application Variables
Application variables are also available to all pages in one application. Application variables are used to store information about ALL users in a specific application.
Lesson 5: ASP Procedures

In ASP you can call a JavaScript procedure from a VBScript and vice versa.

Examples
Call a procedure using VBScript
How to call a VBScript procedure from ASP.
Call a procedure using JavaScript
How to call a JavaScript procedure from ASP.
Call procedures using VBScript
How to call both a JavaScript procedure and a VBScript procedure in an ASP file.

Procedures
The ASP source code can contain procedures and functions:
	<html>

<head>

<%

sub vbproc(num1,num2)

response.write(num1*num2)

end sub

%>

</head>
<body>

<p>Result: <%call vbproc(3,4)%></p>

</body>
</html>

Insert the <%@ language="language" %> line above the <html> tag to write procedures or functions in another scripting language than default:
	<%@ language="javascript" %>

<html>

<head>

<%

function jsproc(num1,num2)

{

Response.Write(num1*num2)

}

%>

</head>
<body>

<p>Result: <%jsproc(3,4)%></p>

</body>
</html>

Differences Between VBScript and JavaScript
When calling a VBScript or a JavaScript procedure from an ASP file written in VBScript, you can use the "call" keyword followed by the procedure name. If a procedure requires parameters, the parameter list must be enclosed in parentheses when using the "call" keyword. If you omit the "call" keyword, the parameter list must not be enclosed in parentheses. If the procedure has no parameters, the parentheses are optional.
When calling a JavaScript or a VBScript procedure from an ASP file written in JavaScript, always use parentheses after the procedure name.
Lesson 6: ASP Procedures

In ASP you can call a JavaScript procedure from a VBScript and vice versa.

Examples
Call a procedure using VBScript
How to call a VBScript procedure from ASP.

<%
<!-- #INCLUDE VIRTUAL="/MasteringASP/include/fileOps.inc" -->
Sub IISLogMessage(ErrNumber, ErrSource, ErrDescription)
dim s
s = "Error: " & ErrNumber & "; Source: " & ErrSource & "; Description: " & ErrDescription
Call Response.AppendToLog(s)
End Sub
Sub logError(aFilename, ErrNumber, ErrSource, ErrDescription)
dim s
s = FormatDateTime(now, vbGeneralDate) & ", "
s = s & ErrNumber & ", "
s = s & chr(34) & ErrSource & chr(34) & ", "
s = s & chr(34) & ErrDescription & chr(34)
call appendToTextFile(aFilename, True, s)
End Sub

Sub showError(ErrNumber, ErrTitle, ErrSource, ErrDescription, ErrHelpFile, appendError)
On Error GoTo 0
Dim s
dim debugFlag
debugFlag = cbool(Application("DebugFlag"))
Select Case debugFlag
Case True
With Response
If Not CBool(appendError) Then
.Clear
.Write "<html><head><title>" & ErrTitle & "</title></head><body>"
End If
.Write "<table align='center' width='85%' border='1' cols='2'>"
.Write "<tr><td colspan='2'>An error has occurred in this application. The error was not caused by anything that you did.</td></tr>"
If VarType(ErrHelpFile) = vbString Then
If ErrHelpFile <> vbNullString Then
.Write "Click Help for more information about this error."
End If
End If
.Write "</tr><td width='30%'>Error Number:</td><td width='*'>" & ErrNumber & "</td></tr>"
.Write "</tr><td width='30%'>Error Source:</td><td width='*'>" & ErrSource & "</td></tr>"
.Write "</tr><td width='30%'>Error Description:</td><td width='*'>" & ErrDescription & "</td></tr>"
.Write "</table>"
If Not CBool(appendError) Then
.Write "</body></html>"
End If
End With
Case False
With Response
If Not CBool(appendError) Then
.Clear
.Write "<html><head><title>" & ErrTitle & "</title></head><body>"
End If
.Write "<hr>"
.Write "<table align='center' width='85%' border='1' cols='2'>"
.Write "<tr><td colspan='2'>An error has occurred in this application. The error was not caused by anything that you did.</td></tr>"
If VarType(ErrHelpFile) = vbString Then
If ErrHelpFile <> vbNullString Then
.Write "<tr><td colspan='2'>Click Help for more information about this error.</td></tr>"
End If
End If
.Write "</tr><td width='30%'>Error Number:</td><td width='*'>" & ErrNumber & "</td></tr>"
.Write "</tr><td width='30%'>What To Do:</td><td width='*'>" & "Print this screen, then call the Help Desk at 7-4500 to report this error." & "</td></tr>"
.Write "</table>"
If Not CBool(appendError) Then
.Write "</body></html>"
End If
End With
End Select
End Sub
%>
Call a procedure using JavaScript
How to call a JavaScript procedure from ASP.
Call procedures using VBScript
How to call both a JavaScript procedure and a VBScript procedure in an ASP file.

Procedures
The ASP source code can contain procedures and functions:
	<html>

<head>

<%

sub vbproc(num1,num2)

response.write(num1*num2)

end sub

%>

</head>
<body>

<p>Result: <%call vbproc(3,4)%></p>

</body>
</html>

Insert the <%@ language="language" %> line above the <html> tag to write procedures or functions in another scripting language than default:
	<%@ language="javascript" %>

<html>

<head>

<%

function jsproc(num1,num2)

{

Response.Write(num1*num2)

}

%>

</head>
<body>

<p>Result: <%jsproc(3,4)%></p>

</body>
</html>

Differences Between VBScript and JavaScript
When calling a VBScript or a JavaScript procedure from an ASP file written in VBScript, you can use the "call" keyword followed by the procedure name. If a procedure requires parameters, the parameter list must be enclosed in parentheses when using the "call" keyword. If you omit the "call" keyword, the parameter list must not be enclosed in parentheses. If the procedure has no parameters, the parentheses are optional.
When calling a JavaScript or a VBScript procedure from an ASP file written in JavaScript, always use parentheses after the procedure name.
Lesson 7: ASP Forms and User Input

The Request.QueryString and Request.Form commands may be used to retrieve information from forms, like user input.

Examples
A form with method="get"
How to interact with the user, with the Request.QueryString command.
A form with method="post"
How to interact with the user, with the Request.Form command.
A form with radio buttons
How to interact with the user, through radio buttons, with the Request.Form command.

User Input
The Request object may be used to retrieve user information from forms.
Form example:
	<form method="get" action="simpleform.asp">

First Name: <input type="text" name="fname" />

Last Name: <input type="text" name="lname" />

<input type="submit" value="Submit" />

</form>

User input can be retrieved in two ways: With Request.QueryString or Request.Form.

Request.QueryString
The Request.QueryString command is used to collect values in a form with method="get". Information sent from a form with the GET method is visible to everyone (it will be displayed in the browser's address bar) and has limits on the amount of information to send.
If a user typed "Bill" and "Gates" in the form example above, the URL sent to the server would look like this:
	http://www.Neosoft.com/simpleform.asp?fname=Bill&lname=Gates

Assume that the ASP file "simpleform.asp" contains the following script:
	<body>

Welcome

<%

response.write(request.querystring("fname"))

response.write(" " & request.querystring("lname"))

%>

</body>

The browser will display the following in the body of the document:
	Welcome Bill Gates

Request.Form
The Request.Form command is used to collect values in a form with method="post". Information sent from a form with the POST method is invisible to others and has no limits on the amount of information to send.
If a user typed "Bill" and "Gates" in the form example above, the URL sent to the server would look like this:
	http://www.Neosoft.com/simpleform.asp

Assume that the ASP file "simpleform.asp" contains the following script:
	<body>

Welcome

<%

response.write(request.form("fname"))

response.write(" " & request.form("lname"))

%>

</body>

The browser will display the following in the body of the document:
	Welcome Bill Gates

Form Validation
User input should be validated on the browser whenever possible (by client scripts). Browser validation is faster and you reduce the server load.
You should consider using server validation if the user input will be inserted into a database. A good way to validate a form on the server is to post the form to itself, instead of jumping to a different page. The user will then get the error messages on the same page as the form. This makes it easier to discover the error.
Lesson 8: ASP Cookies

A cookie is often used to identify a user.

Examples
Welcome cookie
How to create a Welcome cookie.

What is a Cookie?
A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's computer. Each time the same computer requests a page with a browser, it will send the cookie too. With ASP, you can both create and retrieve cookie values.

How to Create a Cookie
The "Response.Cookies" command is used to create cookies.
Note: The Response.Cookies command must appear BEFORE the <html> tag.
In the example below, we will create a cookie named "firstname" and assign the value "Alex" to it:
	<%

Response.Cookies("firstname")="Alex"

%>

It is also possible to assign properties to a cookie, like setting a date when the cookie should expire:
	<%

Response.Cookies("firstname")="Alex"

Response.Cookies("firstname").Expires=#May 10,2002#

%>

How to Retrieve a Cookie Value
The "Request.Cookies" command is used to retrieve a cookie value.
In the example below, we retrieve the value of the cookie named "firstname" and display it on a page:
	<%

fname=Request.Cookies("firstname")

response.write("Firstname=" & fname)

%>

Output:
Firstname=Alex

A Cookie with Keys
If a cookie contains a collection of multiple values, we say that the cookie has Keys.
In the example below, we will create a cookie collection named "user". The "user" cookie has Keys that contains information about a user:
	<%

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

Read all Cookies
Look at the following code:
	<%

Response.Cookies("firstname")="Alex"

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

Assume that your server has sent all the cookies above to a user.
Now we want to read all the cookies sent to a user. The example below shows how to do it (note that the code below checks if a cookie has Keys with the HasKeys property):
	<html>

<body>
<%

dim x,y
for each x in Request.Cookies

 response.write("<p>")

 if Request.Cookies(x).HasKeys then

 for each y in Request.Cookies(x)

 response.write(x & ":" & y & "=" & Request.Cookies(x)(y))

 response.write("
")

 next

 else

 Response.Write(x & "=" & Request.Cookies(x) & "
")

 end if

 response.write "</p>"

next

%>
</body>

</html>

Output:
firstname=Alex
user:firstname=John
user:lastname=Smith
user:country=Norway
user:age=25

What if a Browser Does NOT Support Cookies?
If your application deals with browsers that do not support cookies, you will have to use other methods to pass information from one page to another in your application. There are two ways of doing this:
1. Add parameters to a URL
You can add parameters to a URL:
	

Go to Welcome Page

And retrieve the values in the "welcome.asp" file like this:
	<%

fname=Request.querystring("fname")

lname=Request.querystring("lname")

response.write("<p>Hello " & fname & " " & lname & "!</p>")

response.write("<p>Welcome to my Web site!</p>")

%>

2. Use a form
You can use a form. The form passes the user input to "welcome.asp" when the user clicks on the Submit button:
	<form method="post" action="welcome.asp">

First Name: <input type="text" name="fname" value="">

Last Name: <input type="text" name="lname" value="">

<input type="submit" value="Submit">

</form>

Retrieve the values in the "welcome.asp" file like this:
	<%

fname=Request.form("fname")

lname=Request.form("lname")

response.write("<p>Hello " & fname & " " & lname & "!</p>")

response.write("<p>Welcome to my Web site!</p>")

%>

Lesson 9: ASP Session Object

The Session object is used to store information about, or change settings for a user session. Variables stored in the Session object hold information about one single user, and are available to all pages in one application.

The Session object
When you are working with an application, you open it, do some changes and then you close it. This is much like a Session. The computer knows who you are. It knows when you start the application and when you end. But on the internet there is one problem: the web server does not know who you are and what you do because the HTTP address doesn't maintain state.
ASP solves this problem by creating a unique cookie for each user. The cookie is sent to the client and it contains information that identifies the user. This interface is called the Session object.
The Session object is used to store information about, or change settings for a user session. Variables stored in the Session object hold information about one single user, and are available to all pages in one application. Common information stored in session variables are name, id, and preferences. The server creates a new Session object for each new user, and destroys the Session object when the session expires.

When does a Session Start?
A session starts when:
· A new user requests an ASP file, and the Global.asa file includes a Session_OnStart procedure

· A value is stored in a Session variable

· A user requests an ASP file, and the Global.asa file uses the <object> tag to instantiate an object with session scope

When does a Session End?
A session ends if a user has not requested or refreshed a page in the application for a specified period. By default, this is 20 minutes.
If you want to set a timeout interval that is shorter or longer than the default, you can set the Timeout property.
The example below sets a timeout interval of 5 minutes:
	<%

Session.Timeout=5

%>

To end a session immediately, you may use the Abandon method:
	<%

Session.Abandon

%>

Note: The main problem with sessions is WHEN they should end. We do not know if the user's last request was the final one or not. So we do not know how long we should keep the session "alive". Waiting too long for an idle session uses up resources on the server, but if the session is deleted too soon the user has to start all over again because the server has deleted all the information. Finding the right timeout interval can be difficult!
Tip: If you are using session variables, store SMALL amounts of data in them.

Store and Retrieve Session Variables
The most important thing about the Session object is that you can store variables in it.
The example below will set the Session variable username to "Donald Duck" and the Session variable age to "50":
	<%

Session("username")="Donald Duck"

Session("age")=50

%>

When the value is stored in a session variable it can be reached from ANY page in the ASP application:
	Welcome <%Response.Write(Session("username"))%>

The line above returns: "Welcome Donald Duck".
You can also store user preferences in the Session object, and then access that preference to choose what page to return to the user.
The example below specifies a text-only version of the page if the user has a low screen resolution:
	<%If Session("screenres")="low" Then%>

 This is the text version of the page

<%Else%>

 This is the multimedia version of the page

<%End If%>

Remove Session Variables
The Contents collection contains all session variables.
It is possible to remove a session variable with the Remove method.
The example below removes the session variable "sale" if the value of the session variable "age" is lower than 18:
	<%

If Session.Contents("age")<18 then

 Session.Contents.Remove("sale")

End If

%>

To remove all variables in a session, use the RemoveAll method:
	<%

Session.Contents.RemoveAll()

%>

Loop Through the Contents Collection
The Contents collection contains all session variables. You can loop through the Contents collection, to see what's stored in it:
	<%

Session("username")="Donald Duck"

Session("age")=50
dim i

For Each i in Session.Contents

 Response.Write(i & "
")

Next

%>

Result:
	username

age

If you do not know the number of items in the Contents collection, you can use the Count property:
	<%

dim i

dim j

j=Session.Contents.Count

Response.Write("Session variables: " & j)

For i=1 to j

 Response.Write(Session.Contents(i) & "
")

Next

%>

Result:
	Session variables: 2

Donald Duck

50

Loop Through the StaticObjects Collection
You can loop through the StaticObjects collection, to see the values of all objects stored in the Session object:
	<%

dim i

For Each i in Session.StaticObjects

 Response.Write(i & "
")

Next

%>

Lesson 10: ASP Application Object

A group of ASP files that work together to perform some purpose is called an application. The Application object in ASP is used to tie these files together.

Application Object
An application on the Web may be a group of ASP files. The ASP files work together to perform some purpose. The Application object in ASP is used to tie these files together.
The Application object is used to store and access variables from any page, just like the Session object. The difference is that ALL users share one Application object, while with Sessions there is one Session object for EACH user.
The Application object should hold information that will be used by many pages in the application (like database connection information). This means that you can access the information from any page. It also means that you can change the information in one place and the changes will automatically be reflected on all pages.

Store and Retrieve Application Variables
Application variables can be accessed and changed by any page in the application.
You can create Application variables in "Global.asa" like this:
	<script language="vbscript" runat="server">

Sub Application_OnStart

application("vartime")=""

application("users")=1

End Sub

</script>

In the example above we have created two Application variables: "vartime" and "users".
You can access the value of an Application variable like this:
	There are

<%

Response.Write(Application("users"))

%>

active connections.

Loop Through the Contents Collection
The Contents collection contains all application variables. You can loop through the Contents collection, to see what's stored in it:
	<%

dim i

For Each i in Application.Contents

 Response.Write(i & "
")

Next

%>

If you do not know the number of items in the Contents collection, you can use the Count property:
	<%

dim i

dim j

j=Application.Contents.Count

For i=1 to j

 Response.Write(Application.Contents(i) & "
")

Next

%>

Loop Through the StaticObjects Collection
You can loop through the StaticObjects collection, to see the values of all objects stored in the Application object:
	<%

dim i

For Each i in Application.StaticObjects

 Response.Write(i & "
")

Next

%>

Lock and Unlock
You can lock an application with the "Lock" method. When an application is locked, the users cannot change the Application variables (other than the one currently accessing it). You can unlock an application with the "Unlock" method. This method removes the lock from the Application variable:
	<%

Application.Lock

 'do some application object operations

Application.Unlock

%>

Lesson 11: ASP Including Files

The #include directive is used to create functions, headers, footers, or elements that will be reused on multiple pages.

The #include Directive
You can insert the content of one ASP file into another ASP file before the server executes it, with the #include directive. The #include directive is used to create functions, headers, footers, or elements that will be reused on multiple pages.

How to Use the #include Directive
Here is a file called "mypage.asp":
	<html>

<body>

<h3>Words of Wisdom:</h3>

<p><!--#include file="wisdom.inc"--></p>

<h3>The time is:</h3>

<p><!--#include file="time.inc"--></p>

</body>

</html>

Here is the "wisdom.inc" file:
	"One should never increase, beyond what is necessary,

the number of entities required to explain anything."

Here is the "time.inc" file:
	<%

Response.Write(Time)

%>

If you look at the source code in a browser, it will look something like this:
	<html>

<body>

<h3>Words of Wisdom:</h3>

<p>"One should never increase, beyond what is necessary,

the number of entities required to explain anything."</p>

<h3>The time is:</h3>

<p>11:33:42 AM</p>

</body>

</html>

Syntax for Including Files
To include a file in an ASP page, place the #include directive inside comment tags:
	<!--#include virtual="somefilename"-->
or
<!--#include file ="somefilename"-->

The Virtual Keyword
Use the virtual keyword to indicate a path beginning with a virtual directory.
If a file named "header.inc" resides in a virtual directory named /html, the following line would insert the contents of "header.inc":
	<!-- #include virtual ="/html/header.inc" -->

The File Keyword
Use the file keyword to indicate a relative path. A relative path begins with the directory that contains the including file.
If you have a file in the html directory, and the file "header.inc" resides in html\headers, the following line would insert "header.inc" in your file:
	<!-- #include file ="headers\header.inc" -->

Note that the path to the included file (headers\header.inc) is relative to the including file. If the file containing this #include statement is not in the html directory, the statement will not work.
You can also use the file keyword with the syntax (..\) to include a file from a higher-level directory.

Tips and Notes
In the sections above we have used the file extension ".inc" for included files. Notice that if a user tries to browse an INC file directly, its content will be displayed. If your included file contains confidential information or information you do not want any users to see, it is better to use an ASP extension. The source code in an ASP file will not be visible after the interpretation. An included file can also include other files, and one ASP file can include the same file more than once.
Important: Included files are processed and inserted before the scripts are executed.
The following script will not work because ASP executes the #include directive before it assigns a value to the variable:
	<%

fname="header.inc"

%>

<!--#include file="<%=fname%>"-->

You cannot open or close a script delimiter in an INC file. This script will not work:
	<%

For i = 1 To n

 <!--#include file="count.inc"-->

Next

%>

But this script will work:
	<% For i = 1 to n %>

<!--#include file="count.inc" -->

<% Next %>

Lesson 12: ASP The Global.asa file

The Global.asa file is an optional file that can contain declarations of objects, variables, and methods that can be accessed by every page in an ASP application.

The Global.asa file
The Global.asa file is an optional file that can contain declarations of objects, variables, and methods that can be accessed by every page in an ASP application. All valid browser scripts (JavaScript, VBScript, JScript, PerlScript, etc.) can be used within Global.asa.
The Global.asa file can contain only the following:
· Application events

· Session events

· <object> declarations

· TypeLibrary declarations

· the #include directive

Note: The Global.asa file must be stored in the root directory of the ASP application, and each application can only have one Global.asa file.

Events in Global.asa
In Global.asa you can tell the application and session objects what to do when the application/session starts and what to do when the application/session ends. The code for this is placed in event handlers. The Global.asa file can contain four types of events:
Application_OnStart - This event occurs when the FIRST user calls the first page from an ASP application. This event occurs after the Web server is restarted or after the Global.asa file is edited. The "Session_OnStart" event occurs immediately after this event.
Session_OnStart - This event occurs EVERY time a NEW user requests his or her first page in the ASP application.
Session_OnEnd - This event occurs EVERY time a user ends a session. A user ends a session after a page has not been requested by the user for a specified time (by default this is 20 minutes).
Application_OnEnd - This event occurs after the LAST user has ended the session. Typically, this event occurs when a Web server stops. This procedure is used to clean up settings after the Application stops, like delete records or write information to text files.
A Global.asa file could look something like this:
	<script language="vbscript" runat="server">
sub Application_OnStart

 'some code

end sub
sub Application_OnEnd

 'some code

end sub
sub Session_OnStart

 'some code

end sub
sub Session_OnEnd

 'some code

end sub
</script>

Note: Because we cannot use the ASP script delimiters (<% and %>) to insert scripts in the Global.asa file, we put subroutines inside an HTML <script> element.

<object> Declarations
It is possible to create objects with session or application scope in Global.asa by using the <object> tag.
Note: The <object> tag should be outside the <script> tag!
Syntax
	<object runat="server" scope="scope" id="id"

{progid="progID"|classid="classID"}>

....

</object>

	Parameter
	Description

	scope
	Sets the scope of the object (either Session or Application)

	id
	Specifies a unique id for the object

	ProgID
	An id associated with a class id. The format for ProgID is [Vendor.]Component[.Version]
Either ProgID or ClassID must be specified.

	ClassID
	Specifies a unique id for a COM class object.
Either ProgID or ClassID must be specified.

Examples
The first example creates an object of session scope named "MyAd" by using the ProgID parameter:
	<object runat="server" scope="session" id="MyAd"

progid="MSWC.AdRotator">

</object>

The second example creates an object of application scope named "MyConnection" by using the ClassID parameter:
	<object runat="server" scope="application" id="MyConnection"

classid="Clsid:8AD3067A-B3FC-11CF-A560-00A0C9081C21">

</object>

The objects declared in the Global.asa file can be used by any script in the application:
	GLOBAL.ASA:
<object runat="server" scope="session" id="MyAd"

progid="MSWC.AdRotator">

</object>
You could reference the object "MyAd" from any page in the ASP application:
SOME .ASP FILE:
<%=MyAd.GetAdvertisement("/banners/adrot.txt")%>

TypeLibrary Declarations
A TypeLibrary is a container for the contents of a DLL file corresponding to a COM object. By including a call to the TypeLibrary in the Global.asa file, the constants of the COM object can be accessed, and errors can be better reported by the ASP code. If your Web application relies on COM objects that have declared data types in type libraries, you can declare the type libraries in Global.asa.
Syntax
	<!--METADATA TYPE="TypeLib"

file="filename"

uuid="typelibraryuuid"

version="versionnumber"

lcid="localeid"

-->

	Parameter
	Description

	file
	Specifies an absolute path to a type library.
Either the file parameter or the uuid parameter is required

	uuid
	Specifies a unique identifier for the type library.
Either the file parameter or the uuid parameter is required

	version
	Optional. Used for selecting version. If the requested version is not found, then the most recent version is used

	lcid
	Optional. The locale identifier to be used for the type library

Error Values
The server can return one of the following error messages:
	Error Code
	Description

	ASP 0222
	Invalid type library specification

	ASP 0223
	Type library not found

	ASP 0224
	Type library cannot be loaded

	ASP 0225
	Type library cannot be wrapped

Note: METADATA tags can appear anywhere in the Global.asa file (both inside and outside <script> tags). However, it is recommended that METADATA tags appear near the top of the Global.asa file.

Restrictions
Restrictions on what you can include in the Global.asa file:
· You can not display text that is written in the Global.asa file. This file can't display information

· You can only use Server and Application objects in the Application_OnStart and Application_OnEnd subroutines. In the Session_OnEnd subroutine, you can use Server, Application, and Session objects. In the Session_OnStart subroutine you can use any built-in object

How to use the Subroutines
Global.asa is often used to initialize variables.
The example below shows how to detect the exact time a visitor first arrives on a Web site. The time is stored in a Session variable named "started", and the value of the "started" variable can be accessed from any ASP page in the application:
	<script language="vbscript" runat="server">

sub Session_OnStart

Session("started")=now()

end sub

</script>

Global.asa can also be used to control page access.
The example below shows how to redirect every new visitor to another page, in this case to a page called "newpage.asp":
	<script language="vbscript" runat="server">

sub Session_OnStart

Response.Redirect("newpage.asp")

end sub

</script>

And you can include functions in the Global.asa file.
In the example below the Application_OnStart subroutine occurs when the Web server starts. Then the Application_OnStart subroutine calls another subroutine named "getcustomers". The "getcustomers" subroutine opens a database and retrieves a record set from the "customers" table. The record set is assigned to an array, where it can be accessed from any ASP page without querying the database:
	<script language="vbscript" runat="server">
sub Application_OnStart

getcustomers

end sub
sub getcustomers

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=conn.execute("select name from customers")

Application("customers")=rs.GetRows

rs.Close

conn.Close

end sub
</script>

Global.asa Example
In this example we will create a Global.asa file that counts the number of current visitors.
· The Application_OnStart sets the Application variable "visitors" to 0 when the server starts

· The Session_OnStart subroutine adds one to the variable "visitors" every time a new visitor arrives

· The Session_OnEnd subroutine subtracts one from "visitors" each time this subroutine is triggered

The Global.asa file:
	<script language="vbscript" runat="server">
Sub Application_OnStart

Application("visitors")=0

End Sub
Sub Session_OnStart

Application.Lock

Application("visitors")=Application("visitors")+1

Application.UnLock

End Sub
Sub Session_OnEnd

Application.Lock

Application("visitors")=Application("visitors")-1

Application.UnLock

End Sub
</script>

To display the number of current visitors in an ASP file:
	<html>

<head>

</head>

<body>

<p>

There are <%response.write(Application("visitors"))%>

online now!

</p>

</body>

</html>

Lesson 13: ASP Sending e-mail with CDOSYS

CDOSYS is a built-in component in ASP. This component is used to send e-mails with ASP.

Sending e-mail with CDOSYS
CDO (Collaboration Data Objects) is a Microsoft technology that is designed to simplify the creation of messaging applications.
CDOSYS is a built-in component in ASP. We will show you how to use this component to send e-mail with ASP.
How about CDONTs?
Microsoft has discontinued the use of CDONTs on Windows 2000, Windows XP and Windows 2003. If you have used CDONTs in your ASP applications, you should update the code and use the new CDO technology.
Examples using CDOSYS
Sending a text e-mail:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.TextBody="This is a message."

myMail.Send

set myMail=nothing

%>

Sending a text e-mail with Bcc and CC fields:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.Bcc="someoneelse@somedomain.com"

myMail.Cc="someoneelse2@somedomain.com"

myMail.TextBody="This is a message."

myMail.Send

set myMail=nothing

%>

Sending an HTML e-mail:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.HTMLBody = "<h1>This is a message.</h1>"

myMail.Send

set myMail=nothing

%>

Sending an HTML e-mail that sends a webpage from a website:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.CreateMHTMLBody "http://www.Neosoft.com/asp/"

myMail.Send

set myMail=nothing

%>

Sending an HTML e-mail that sends a webpage from a file on your computer:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.CreateMHTMLBody "file://c:/mydocuments/test.htm"

myMail.Send

set myMail=nothing

%>

Sending a text e-mail with an Attachment:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.TextBody="This is a message."

myMail.AddAttachment "c:\mydocuments\test.txt"

myMail.Send

set myMail=nothing

%>

Sending a text e-mail using a remote server:
	<%

Set myMail=CreateObject("CDO.Message")

myMail.Subject="Sending email with CDO"

myMail.From="mymail@mydomain.com"

myMail.To="someone@somedomain.com"

myMail.TextBody="This is a message."

myMail.Configuration.Fields.Item _

("http://schemas.microsoft.com/cdo/configuration/sendusing")=2

'Name or IP of remote SMTP server

myMail.Configuration.Fields.Item _

("http://schemas.microsoft.com/cdo/configuration/smtpserver") _

="smtp.server.com"

'Server port

myMail.Configuration.Fields.Item _

("http://schemas.microsoft.com/cdo/configuration/smtpserverport") _

=25

myMail.Configuration.Fields.Update

myMail.Send

set myMail=nothing

%>

Lesson 14: ASP Response Object

The ASP Response object is used to send output to the user from the server.

Examples
Write text with ASP
This example demonstrates how to write text with ASP.
Format text with HTML tags in ASP
This example demonstrates how to combine text and HTML tags with ASP.
Redirect the user to a different URL
This example demonstrates how to redirect the user to a different URL.
Show a random link
This example demonstrates a link, each time you load the page, it will display one of two links: Neosoft.com! OR Refsnesdata.no! There is a 50% chance for each of them.
Controlling the buffer
This example demonstrates how you can control the buffer.
Clear the buffer
This example demonstrates how you can clear the buffer.
End a script in the middle of processing and return the result
This example demonstrates how to end a script in the middle of processing.
Set how many minutes a page will be cached in a browser before it expires
This example demonstrates how to specify how many minutes a page will be cached in a browser before it expires.
Set a date/time when a page cached in a browser will expire
This example demonstrates how to specify a date/time a page cached in a browser will expire.
Check if the user is still connected to the server
This example demonstrates how to check if a user is disconnected from the server.
Set the type of content
This example demonstrates how to specify the type of content.
Set the name of the character set
This example demonstrates how to specify the name of the character set.

Response Object
The ASP Response object is used to send output to the user from the server. Its collections, properties, and methods are described below:
Collections
	Collection
	Description

	Cookies
	Sets a cookie value. If the cookie does not exist, it will be created, and take the value that is specified

Properties
	Property
	Description

	Buffer
	Specifies whether to buffer the page output or not

	CacheControl
	Sets whether a proxy server can cache the output generated by ASP or not

	Charset
	Appends the name of a character-set to the content-type header in the Response object

	ContentType
	Sets the HTTP content type for the Response object

	Expires
	Sets how long (in minutes) a page will be cached on a browser before it expires

	ExpiresAbsolute
	Sets a date and time when a page cached on a browser will expire

	IsClientConnected
	Indicates if the client has disconnected from the server

	Pics
	Appends a value to the PICS label response header

	Status
	Specifies the value of the status line returned by the server

Methods
	Method
	Description

	AddHeader
	Adds a new HTTP header and a value to the HTTP response

	AppendToLog
	Adds a string to the end of the server log entry

	BinaryWrite
	Writes data directly to the output without any character conversion

	Clear
	Clears any buffered HTML output

	End
	Stops processing a script, and returns the current result

	Flush
	Sends buffered HTML output immediately

	Redirect
	Redirects the user to a different URL

	Write
	Writes a specified string to the output

Lesson 15: ASP Request Object

The ASP Request object is used to get information from the user.

QueryString Collection Examples
Send query information when a user clicks on a link
This example demonstrates how to send some extra query information to a page within a link, and retrieve that information on the destination page (which is, in this example, the same page).
<%
Function validate(d)
Dim name
Dim conditions
Dim value
Dim subtype
Dim minVal
Dim maxVal
Dim allowNull
Dim i
Dim typeString
Dim validChars
validate = vbNullString
For Each name In d
conditions = d(name)
subtype = conditions(1)
minVal = conditions(2)
maxVal = conditions(3)
validChars = conditions(4)
allowNull = conditions(5)
If Not allowNull Then
If conditions(0) = vbNullString Then
validate = "You must enter a " & name & ".
"
Exit Function
End If
End If
On Error Resume Next
Select Case subtype
Case vbInteger
typeString = "Integer"
value = CInt(conditions(0))
If IsNumeric(minVal) Then
If value < minVal Then
validate = "" & name & " must be at least " & minVal & ".
"
Exit Function
End If
End If
If IsNumeric(maxVal) Then
If value > maxVal Then
validate = "" & name & " may be at most " & minVal & ".
"
Exit Function
End If
End If
d.Item(name) = value
Case vbLong
typeString = "Long"
value = CLng(conditions(0))
If IsNumeric(minVal) Then
If value < minVal Then
validate = "" & name & " must be at least " & minVal & ".
"
Exit Function
End If
End If
If IsNumeric(maxVal) Then
If value > maxVal Then
validate = "" & name & " may be at most " & minVal & ".
"
Exit Function
End If
End If
d.Item(name) = value
Case vbString
typeString = "String"
value = CStr(conditions(0))
If Len(value) < minVal Then
validate = "" & name & " must be at least " & minVal & " characters long.
"
Exit Function
ElseIf Len(value) > maxVal Then
validate = "" & name & " may only be " & maxVal & " characters long.
"
Exit Function
End If
' check characters
If Len(validChars) > 0 Then
For i = 1 To Len(value)
If InStr(validChars, Mid(value, i, 1)) = 0 Then
validate = "" & name & " contains invalid characters.
"
Exit Function
End If
Next
End If
d.Item(name) = value
Case vbDate
typeString = "Date"
If Not IsDate(conditions(0)) Then
validate = "" & name & " is not a valid date.
"
Exit Function
End If
value = CDate(conditions(0))
If IsDate(minVal) Then
If value < minVal Then
validate = "" & name & " must be at least " & minVal & ".
"
Exit Function
End If
End If
If IsDate(maxVal) Then
If value > maxVal Then
validate = "" & name & " may be at most " & minVal & ".
"
Exit Function
End If
End If
d.Item(name) = value
Case Else
Err.Raise 50000, "validate", "Unhandled variable type in validate function."
' add more types as needed
End Select
If Err.Number <> 0 Or VarType(value) <> subtype Then
validate = "Invalid value--" & name & ". Expected a " & typeString & " value.
"
Exit Function
ElseIf typeString = "String" And Len(value) < minVal Then
validate = "" & name & " must be at least " & minVal & " characters long.
"
Exit Function
ElseIf typeString = "String" And Len(value) > maxVal Then
validate = "" & name & " may only be " & maxVal & " characters long.
"
Exit Function
End If
Next
End Function

%>
A QueryString collection in its simplest use
This example demonstrates how the QueryString collection retrieves the values from a form. The form uses the GET method, which means that the information sent is visible to everybody (in the address field). The GET method also limits the amount of information that can be sent.
How to use information from forms
This example demonstrates how to use the values retrieved from a form. We use the QueryString collection. The form uses the get method.
More information from a form
This example demonstrates what the QueryString contains if several input fields have the same name. It shows how to separate input fields with equal names from each other. It also shows how to use the Count keyword to count the "name" property. The form uses the get method.
Form Collection Examples
A form collection in its simplest use
This example demonstrates how the Form collection retrieves the values from a form. The form uses the POST method, which means that the information sent is invisible to others, and it has no limits (you can send a large amount of information).
How to use information from forms
This example demonstrates how to use the values retrieved from a form. We use the Form collection. The form uses the post method.
More information from a form
This example demonstrates what the Form collection contains if several input fields have the same name. It shows how to separate input fields with equal names from each other. It also shows how to use the Count keyword to count the "name" property. The form uses the post method.
A form with radio buttons
This example demonstrates how to interact with the user through radio buttons, with the Form collection. The form uses the post method.
A form with checkboxes
This example demonstrates how to interact with the user through checkboxes, with the Form collection. The form uses the post method.
Other Examples
Get the server variables
This example demonstrates how to find out the visitors (yours) browser type, IP address, and more with the ServerVariables collection.
Create a welcome cookie
This example demonstrates how to create a Welcome Cookie with the Cookies Collection.
Find the total number of bytes the user sent
This example demonstrates how to use the TotalBytes property to find out the total number of bytes the user sent in the Request object.

Request Object
When a browser asks for a page from a server, it is called a request. The ASP Request object is used to get information from the user. Its collections, properties, and methods are described below:
Collections
	Collection
	Description

	ClientCertificate
	Contains all the field values stored in the client certificate

	Cookies
	Contains all the cookie values sent in a HTTP request

	Form
	Contains all the form (input) values from a form that uses the post method

	QueryString
	Contains all the variable values in a HTTP query string

	ServerVariables
	Contains all the server variable values

Properties
	Property
	Description

	TotalBytes
	Returns the total number of bytes the client sent in the body of the request

Methods
	Method
	Description

	BinaryRead
	Retrieves the data sent to the server from the client as part of a post request and stores it in a safe array

Lesson 16: ASP Application Object

A group of ASP files that work together to perform some purpose is called an application. The Application object in ASP is used to tie these files together.

Application Object
An application on the Web may be a group of ASP files. The ASP files work together to perform some purpose. The Application object in ASP is used to tie these files together.
The Application object is used to store and access variables from any page, just like the Session object. The difference is that ALL users share one Application object, while with Sessions there is one Session object for EACH user.
The Application object should hold information that will be used by many pages in the application (like database connection information). This means that you can access the information from any page. It also means that you can change the information in one place and the changes will automatically be reflected on all pages.
The Application object's collections, methods, and events are described below:
Collections
	Collection
	Description

	Contents
	Contains all the items appended to the application through a script command

	StaticObjects
	Contains all the objects appended to the application with the HTML <object> tag

Methods
	Method
	Description

	Contents.Remove
	Deletes an item from the Contents collection

	Contents.RemoveAll()
	Deletes all items from the Contents collection

	Lock
	Prevents other users from modifying the variables in the Application object

	Unlock
	Enables other users to modify the variables in the Application object (after it has been locked using the Lock method)

Events
	Event
	Description

	Application_OnEnd
	Occurs when all user sessions are over, and the application ends

	Application_OnStart
	Occurs before the first new session is created (when the Application object is first referenced)

Lesson 17: ASP Session Object

The Session object is used to store information about, or change settings for a user session. Variables stored in the Session object hold information about one single user, and are available to all pages in one application.

Examples
Set and return the LCID
This example demonstrates the "LCID" property. This property sets or returns an integer that specifies a location or region. Contents like date, time, and currency will be displayed according to that location or region.
Return the SessionID
This example demonstrates the "SessionID" property. This property returns a unique id for each user. The id is generated by the server.
A session's timeout
This example demonstrates the "Timeout" property. This example sets and returns the timeout (in minutes) for the session.

Session Object
When you are working with an application, you open it, do some changes and then you close it. This is much like a Session. The computer knows who you are. It knows when you start the application and when you end. But on the internet there is one problem: the web server does not know who you are and what you do because the HTTP address doesn't maintain state.
ASP solves this problem by creating a unique cookie for each user. The cookie is sent to the client and it contains information that identifies the user. This interface is called the Session object.
The Session object is used to store information about, or change settings for a user session. Variables stored in the Session object hold information about one single user, and are available to all pages in one application. Common information stored in session variables are name, id, and preferences. The server creates a new Session object for each new user, and destroys the Session object when the session expires.
The Session object's collections, properties, methods, and events are described below:
Collections
	Collection
	Description

	Contents
	Contains all the items appended to the session through a script command

	StaticObjects
	Contains all the objects appended to the session with the HTML <object> tag

Properties
	Property
	Description

	CodePage
	Specifies the character set that will be used when displaying dynamic content

	LCID
	Sets or returns an integer that specifies a location or region. Contents like date, time, and currency will be displayed according to that location or region

	SessionID
	Returns a unique id for each user. The unique id is generated by the server

	Timeout
	Sets or returns the timeout period (in minutes) for the Session object in this application

Methods
	Method
	Description

	Abandon
	Destroys a user session

	Contents.Remove
	Deletes an item from the Contents collection

	Contents.RemoveAll()
	Deletes all items from the Contents collection

Events
	Event
	Description

	Session_OnEnd
	Occurs when a session ends

	Session_OnStart
	Occurs when a session starts

Lesson 18: ASP Server Object

The ASP Server object is used to access properties and methods on the server.

Examples
When was a file last modified?
Checks when this file was last modified.
Open a text file for reading
This example opens the file "Textfile.txt" for reading.
Homemade hit counter
This example reads a number from a file, adds 1 to the number, and writes the number back to the file.

Server Object
The ASP Server object is used to access properties and methods on the server. Its properties and methods are described below:
Properties
	Property
	Description

	ScriptTimeout
	Sets or returns the maximum number of seconds a script can run before it is terminated

Methods
	Method
	Description

	CreateObject
	Creates an instance of an object

	Execute
	Executes an ASP file from inside another ASP file

	GetLastError()
	Returns an ASPError object that describes the error condition that occurred

	HTMLEncode
	Applies HTML encoding to a specified string

	MapPath
	Maps a specified path to a physical path

	Transfer
	Sends (transfers) all the information created in one ASP file to a second ASP file

	URLEncode
	Applies URL encoding rules to a specified string

Lesson 19: ASP ASPError Object

The ASPError object is used to display detailed information of any error that occurs in scripts in an ASP page.

The ASPError Object
The ASPError object was implemented in ASP 3.0 and is available in IIS5 and later.
The ASPError object is used to display detailed information of any error that occurs in scripts in an ASP page. The ASPError object is created when Server.GetLastError is called, so the error information can only be accessed by using the Server.GetLastError method.
The ASPError object's properties are described below (all properties are read-only):
Note: The properties below can only be accessed through the Server.GetLastError() method.

Example:

<%
<!-- #INCLUDE VIRTUAL="/MasteringASP/include/fileOps.inc" -->
Sub IISLogMessage(ErrNumber, ErrSource, ErrDescription)
dim s
s = "Error: " & ErrNumber & "; Source: " & ErrSource & "; Description: " & ErrDescription
Call Response.AppendToLog(s)
End Sub
Sub logError(aFilename, ErrNumber, ErrSource, ErrDescription)
dim s
s = FormatDateTime(now, vbGeneralDate) & ", "
s = s & ErrNumber & ", "
s = s & chr(34) & ErrSource & chr(34) & ", "
s = s & chr(34) & ErrDescription & chr(34)
call appendToTextFile(aFilename, True, s)
End Sub

Sub showError(ErrNumber, ErrTitle, ErrSource, ErrDescription, ErrHelpFile, appendError)
On Error GoTo 0
Dim s
dim debugFlag
debugFlag = cbool(Application("DebugFlag"))
Select Case debugFlag
Case True
With Response
If Not CBool(appendError) Then
.Clear
.Write "<html><head><title>" & ErrTitle & "</title></head><body>"
End If
.Write "<table align='center' width='85%' border='1' cols='2'>"
.Write "<tr><td colspan='2'>An error has occurred in this application. The error was not caused by anything that you did.</td></tr>"
If VarType(ErrHelpFile) = vbString Then
If ErrHelpFile <> vbNullString Then
.Write "Click Help for more information about this error."
End If
End If
.Write "</tr><td width='30%'>Error Number:</td><td width='*'>" & ErrNumber & "</td></tr>"
.Write "</tr><td width='30%'>Error Source:</td><td width='*'>" & ErrSource & "</td></tr>"
.Write "</tr><td width='30%'>Error Description:</td><td width='*'>" & ErrDescription & "</td></tr>"
.Write "</table>"
If Not CBool(appendError) Then
.Write "</body></html>"
End If
End With
Case False
With Response
If Not CBool(appendError) Then
.Clear
.Write "<html><head><title>" & ErrTitle & "</title></head><body>"
End If
.Write "<hr>"
.Write "<table align='center' width='85%' border='1' cols='2'>"
.Write "<tr><td colspan='2'>An error has occurred in this application. The error was not caused by anything that you did.</td></tr>"
If VarType(ErrHelpFile) = vbString Then
If ErrHelpFile <> vbNullString Then
.Write "<tr><td colspan='2'>Click Help for more information about this error.</td></tr>"
End If
End If
.Write "</tr><td width='30%'>Error Number:</td><td width='*'>" & ErrNumber & "</td></tr>"
.Write "</tr><td width='30%'>What To Do:</td><td width='*'>" & "Print this screen, then call the Help Desk at 7-4500 to report this error." & "</td></tr>"
.Write "</table>"
If Not CBool(appendError) Then
.Write "</body></html>"
End If
End With
End Select
End Sub
%>
Properties
	Property
	Description

	ASPCode
	Returns an error code generated by IIS

	ASPDescription
	Returns a detailed description of the error (if the error is ASP-related)

	Category
	Returns the source of the error (was the error generated by ASP? By a scripting language? By an object?)

	Column
	Returns the column position within the file that generated the error

	Description
	Returns a short description of the error

	File
	Returns the name of the ASP file that generated the error

	Line
	Returns the line number where the error was detected

	Number
	Returns the standard COM error code for the error

	Source
	Returns the actual source code of the line where the error occurred

Lesson 20: ASP FileSystemObject Object

The FileSystemObject object is used to access the file system on the server.

Examples
Does a specified file exist?
This example demonstrates how to first create a FileSystemObject Object, and then use the FileExists method to check if the file exists.
Does a specified folder exist?
This example demonstrates how to use the FolderExists method to check if a folder exists.
Does a specified drive exist?
This example demonstrates how to use the DriveExists method to check if a drive exists.
Get the name of a specified drive
This example demonstrates how to use the GetDriveName method to get the name of a specified drive.
Get the name of the parent folder of a specified path
This example demonstrates how to use the GetParentFolderName method to get the name of the parent folder of a specified path.
Get the file extension
This example demonstrates how to use the GetExtensionName method to get the file extension of the last component in a specified path.
Get file name
This example demonstrates how to use the GetFileName method to get the file name of the last component in a specified path.
Get the base name of a file or folder
This example demonstrates how to use the GetBaseName method to return the base name of the file or folder, in a specified path.

The FileSystemObject Object
The FileSystemObject object is used to access the file system on the server. This object can manipulate files, folders, and directory paths. It is also possible to retrieve file system information with this object.
The following code creates a text file (c:\test.txt) and then writes some text to the file:
	<%
dim fs,fname
set fs=Server.CreateObject("Scripting.FileSystemObject")
set fname=fs.CreateTextFile("c:\test.txt",true)
fname.WriteLine("Hello World!")
fname.Close
set fname=nothing
set fs=nothing
%>

The FileSystemObject object's properties and methods are described below:
Properties
	Property
	Description

	Drives
	Returns a collection of all Drive objects on the computer

Methods
	Method
	Description

	BuildPath
	Appends a name to an existing path

	CopyFile
	Copies one or more files from one location to another

	CopyFolder
	Copies one or more folders from one location to another

	CreateFolder
	Creates a new folder

	CreateTextFile
	Creates a text file and returns a TextStream object that can be used to read from, or write to the file

	DeleteFile
	Deletes one or more specified files

	DeleteFolder
	Deletes one or more specified folders

	DriveExists
	Checks if a specified drive exists

	FileExists
	Checks if a specified file exists

	FolderExists
	Checks if a specified folder exists

	GetAbsolutePathName
	Returns the complete path from the root of the drive for the specified path

	GetBaseName
	Returns the base name of a specified file or folder

	GetDrive
	Returns a Drive object corresponding to the drive in a specified path

	GetDriveName
	Returns the drive name of a specified path

	GetExtensionName
	Returns the file extension name for the last component in a specified path

	GetFile
	Returns a File object for a specified path

	GetFileName
	Returns the file name or folder name for the last component in a specified path

	GetFolder
	Returns a Folder object for a specified path

	GetParentFolderName
	Returns the name of the parent folder of the last component in a specified path

	GetSpecialFolder
	Returns the path to some of Windows' special folders

	GetTempName
	Returns a randomly generated temporary file or folder

	MoveFile
	Moves one or more files from one location to another

	MoveFolder
	Moves one or more folders from one location to another

	OpenTextFile
	Opens a file and returns a TextStream object that can be used to access the file

Lesson 21: ASP TextStream Object

The TextStream object is used to access the contents of a text file.

Examples
Read textfile
This example demonstrates how to use the OpenTextFile method of the FileSystemObject to create a TextStream Object. The ReadAll method of the TextStream Object reads from the opened text file.
<%
' IOMode Private Constants
Private Const ForReading = 1
Private Const ForWriting = 2
Private Const ForAppending = 8

' Drive type Private Constants
Private Const Unknown = 0
Private Const Removable = 1
Private Const Fixed = 2
Private Const Remote = 3
Private Const CDRom = 4
Private Const RamDisk = 5

' SpecialFolder Private Constants
Private Const WindowsFolder = 0
Private Const SystemFolder = 1
Private Const TemporaryFolder = 2

' Tristate Private Constants
Private Const TristateMixed = -2
Private Const TristateTrue = -1
Private Const TristateFalse = 0
Private Const TristateUseDefault = -2

' FileAttribute Private Constants
Private Const Alias = 1024
Private Const Archive = 32
Private Const Compressed = 2048
Private Const Directory = 16
Private Const Hidden = 2
Private Const Normal = 0
Private Const ReadOnly = 1
Private Const System = 4

Function newFileSystemObject()
Set newFileSystemObject = Server.CreateObject("Scripting.FileSystemObject")
End Function

Function fileExists(aFileSpec)
fileExists = newFileSystemObject.fileExists(aFileSpec)
End Function

Function getSpecialFolder(whichFolder)
getSpecialFolder = newFileSystemObject.getSpecialFolder(whichFolder)
End Function

Function getWindowsFolder()
getWindowsFolder = getSpecialFolder(WindowsFolder)
End Function

Function getSystemFolder()
getSystemFolder = getSpecialFolder(SystemFolder)
End Function

Function getTempFolder()
getTempFolder = getTempFolder(TemporaryFolder)
End Function

Function getScriptPath()
Dim aPath
aPath = Request.ServerVariables("PATH_TRANSLATED")
' strip the file name from the path
aPath = Left(aPath, InStrRev(aPath, "\"))
getScriptPath = aPath
End Function

Function getCurrentFile()
dim currentScript
dim parts
dim aFile
aFile = ""
currentScript = Request.ServerVariables("URL")
if currentScript = "" then
currentScript = Request.ServerVariables("SCRIPT_NAME")
end if
if currentScript <> "" then
parts = split(currentScript, "/")
if ubound(parts) >= 0 then
aFile = parts(ubound(parts))
end if
end if
getCurrentFile = aFile
End Function

Function readTextFile(aFilename)
Dim s
Dim fs
Dim ts
Dim F
Set fs = newFileSystemObject()
If not fs.fileExists(aFilename) Then
Err.Clear
Err.raise 50000, "fileOps.inc--readTextFile()","The file " & aFilename & " does not exist."
Exit Function
End if
Set F = fs.getFile(aFilename)
If F.Size > 0 Then
Set ts = fs.openTextFile(aFilename, ForReading, False, TristateUseDefault)
readTextFile = ts.ReadAll
ts.Close
End If
Set ts = Nothing
Set fs = Nothing
End Function

Sub writeTextFile(aFilename, CreateFlag, newText)
Dim fs
Dim ts
Set fs = newFileSystemObject
If CreateFlag Then
Set ts = fs.openTextFile(aFilename, ForWriting, True, TristateUseDefault)
Else
Set ts = fs.openTextFile(aFilename, ForWriting, False, TristateUseDefault)
End If
ts.write newText
ts.Close
Set ts = Nothing
Set fs = Nothing
End Sub

Sub appendToTextFile(aFilename, CreateFlag, newText)
Dim fs
Dim ts
Set fs = newFileSystemObject
If CreateFlag Then
Set ts = fs.openTextFile(aFilename, ForAppending, True, TristateUseDefault)
Else
Set ts = fs.openTextFile(aFilename, ForAppending, False, TristateUseDefault)
End If
ts.writeLine newText
ts.Close
Set ts = Nothing
Set fs = Nothing
End Sub
%>
Read only a part of a textfile
This example demonstrates how to only read a part of a TextStream file.
Read one line of a textfile
This example demonstrates how to read one line from a TextStream file.
Read all lines from a textfile
This example demonstrates how to read all the lines from a TextStream file.
Skip a part of a textfile
This example demonstrates how to skip a specified number of characters when reading the TextStream file.
Skip a line of a textfile
This example demonstrates how to skip a line when reading the TextStream file.
Return line-number
This example demonstrates how to return the current line number in a TextStream file.
Get column number
This example demonstrates how to get the column number of the current character in a file.

The TextStream Object
The TextStream object is used to access the contents of text files.
The following code creates a text file (c:\test.txt) and then writes some text to the file (the variable f is an instance of the TextStream object):
	<%

dim fs, f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt",true)

f.WriteLine("Hello World!")

f.Close

set f=nothing

set fs=nothing

%>

To create an instance of the TextStream object you can use the CreateTextFile or OpenTextFile methods of the FileSystemObject object, or you can use the OpenAsTextStream method of the File object.

The TextStream object's properties and methods are described below:
Properties
	Property
	Description

	AtEndOfLine
	Returns true if the file pointer is positioned immediately before the end-of-line marker in a TextStream file, and false if not

	AtEndOfStream
	Returns true if the file pointer is at the end of a TextStream file, and false if not

	Column
	Returns the column number of the current character position in an input stream

	Line
	Returns the current line number in a TextStream file

Methods
	Method
	Description

	Close
	Closes an open TextStream file

	Read
	Reads a specified number of characters from a TextStream file and returns the result

	ReadAll
	Reads an entire TextStream file and returns the result

	ReadLine
	Reads one line from a TextStream file and returns the result

	Skip
	Skips a specified number of characters when reading a TextStream file

	SkipLine
	Skips the next line when reading a TextStream file

	Write
	Writes a specified text to a TextStream file

	WriteLine
	Writes a specified text and a new-line character to a TextStream file

	WriteBlankLines
	Writes a specified number of new-line character to a TextStream file

Lesson 22: ASP Drive Object

The Drive object is used to return information about a local disk drive or a network share.

Examples
Get the available space of a specified drive
This example demonstrates how to first create a FileSystemObject object, and then use the AvailableSpace property to get the available space of a specified drive.
<%
Function newDictionary()
dim d
set d = Server.CreateObject("Scripting.Dictionary")
d.CompareMode=vbTextCompare
Set newDictionary=d
End Function
Function printArray(arr)
Dim V
For Each V in arr
If isArray(V) Then
call printArray(V)
Elseif isObject(V) Then
If Typename(V) = "Dictionary" then
Call printDictionary(V)
Else
Response.Write "{Object: " & Typename(V) & "}
"
End If
Else
Response.Write V & "
"
End If
Next
End Function
Function printDictionary(d)
For Each V in d.Keys()
If isObject(d(V)) Then
If Typename(d(V)) = "Dictionary" Then
Call printDictionary(d(V))
End If
Elseif isArray(d(V)) Then
Call printArray(d(V))
Else
Response.Write V & "=" & d(V) & "
"
End If
Next
End Function
%>
Get the free space of a specified drive
This example demonstrates how to use the FreeSpace property to get the free space of a specified drive.
Get the total size of a specified drive
This example demonstrates how to use the TotalSize property to get the total size of a specified drive.
Get the drive letter of a specified drive
This example demonstrates how to use the DriveLetter property to get the drive letter of a specified drive.
Get the drive type of a specified drive
This example demonstrates how to use the DriveType property to get the drive type of a specified drive.
Get the file system of a specified drive
This example demonstrates how to use the FileSystem property to get the file system of a specified drive.
Is the drive ready?
This example demonstrates how to use the IsReady property to check whether a specified drive is ready.
Get the path of a specified drive
This example demonstrates how to use the Path property to get the path of a specified drive.
Get the root folder of a specified drive
This example demonstrates how to use the RootFolder property to get the root folder of a specified drive.
Get the serialnumber of a specified drive
This example demonstrates how to use the Serialnumber property to get the serialnumber of a specified drive.

The Drive Object
The Drive object is used to return information about a local disk drive or a network share. The Drive object can return information about a drive's type of file system, free space, serial number, volume name, and more.
Note: You cannot return information about a drive's content with the Drive object. For this purpose you will have to use the Folder object.
To work with the properties of the Drive object, you will have to create an instance of the Drive object through the FileSystemObject object. First; create a FileSystemObject object and then instantiate the Drive object through the GetDrive method or the Drives property of the FileSystemObject object.
The following example uses the GetDrive method of the FileSystemObject object to instantiate the Drive object and the TotalSize property to return the total size in bytes of the specified drive (c:):
	<%

Dim fs,d

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set d=fs.GetDrive("c:")

Response.Write("Drive " & d & ":")

Response.Write("Total size in bytes: " & d.TotalSize)

set d=nothing

set fs=nothing

%>
Output:
Drive c: Total size in bytes: 4293563392

The Drive object's properties are described below:
Properties
	Property
	Description

	AvailableSpace
	Returns the amount of available space to a user on a specified drive or network share

	DriveLetter
	Returns one uppercase letter that identifies the local drive or a network share

	DriveType
	Returns the type of a specified drive

	FileSystem
	Returns the file system in use for a specified drive

	FreeSpace
	Returns the amount of free space to a user on a specified drive or network share

	IsReady
	Returns true if the specified drive is ready and false if not

	Path
	Returns an uppercase letter followed by a colon that indicates the path name for a specified drive

	RootFolder
	Returns a Folder object that represents the root folder of a specified drive

	SerialNumber
	Returns the serial number of a specified drive

	ShareName
	Returns the network share name for a specified drive

	TotalSize
	Returns the total size of a specified drive or network share

	VolumeName
	Sets or returns the volume name of a specified drive

Lesson 23: ASP File Object

The File object is used to return information about a specified file.

Examples
When was the file created?
This example demonstrates how to first create a FileSystemObject object, and then use the DateCreated property of the File object to get the date and time a specified file was created.
When was the file last modified?
This example demonstrates how to use the DateLastModified property to get the date and time a specified file was last modified.
When was the file last accessed?
This example demonstrates how to use the DateLastAccessed property to get the date and time a specified file was last accessed.
Return the attributes of a specified file
This example demonstrates how to use the Attributes property to return the attributes of a specified file.

The File Object
The File object is used to return information about a specified file.
To work with the properties and methods of the File object, you will have to create an instance of the File object through the FileSystemObject object. First; create a FileSystemObject object and then instantiate the File object through the GetFile method of the FileSystemObject object or through the Files property of the Folder object.
The following code uses the GetFile method of the FileSystemObject object to instantiate the File object and the DateCreated property to return the date when the specified file was created:
	<%

Dim fs,f

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.GetFile("c:\test.txt")

Response.Write("File created: " & f.DateCreated)

set f=nothing

set fs=nothing

%>
Output:
File created: 9/19/2001 10:01:19 AM

The File object's properties and methods are described below:
Properties
	Property
	Description

	Attributes
	Sets or returns the attributes of a specified file

	DateCreated
	Returns the date and time when a specified file was created

	DateLastAccessed
	Returns the date and time when a specified file was last accessed

	DateLastModified
	Returns the date and time when a specified file was last modified

	Drive
	Returns the drive letter of the drive where a specified file or folder resides

	Name
	Sets or returns the name of a specified file

	ParentFolder
	Returns the folder object for the parent of the specified file

	Path
	Returns the path for a specified file

	ShortName
	Returns the short name of a specified file (the 8.3 naming convention)

	ShortPath
	Returns the short path of a specified file (the 8.3 naming convention)

	Size
	Returns the size, in bytes, of a specified file

	Type
	Returns the type of a specified file

Methods
	Method
	Description

	Copy
	Copies a specified file from one location to another

	Delete
	Deletes a specified file

	Move
	Moves a specified file from one location to another

	OpenAsTextStream
	Opens a specified file and returns a TextStream object to access the file

Lesson 24: ASP Folder Object

The Folder Object is used to return information about a specified folder.

The Folder Object
The Folder object is used to return information about a specified folder.
To work with the properties and methods of the Folder object, you will have to create an instance of the Folder object through the FileSystemObject object. First; create a FileSystemObject object and then instantiate the Folder object through the GetFolder method of the FileSystemObject object.
The following code uses the GetFolder method of the FileSystemObject object to instantiate the Folder object and the DateCreated property to return the date when the specified folder was created:
	<%

Dim fs,fo

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set fo=fs.GetFolder("c:\test")

Response.Write("Folder created: " & fo.DateCreated)

set fo=nothing

set fs=nothing

%>
Output:
Folder created: 10/22/2001 10:01:19 AM

The Folder object's collections, properties, and methods are described below:
Collections
	Collection
	Description

	Files
	Returns a collection of all the files in a specified folder

	SubFolders
	Returns a collection of all subfolders in a specified folder

Properties
	Property
	Description

	Attributes
	Sets or returns the attributes of a specified folder

	DateCreated
	Returns the date and time when a specified folder was created

	DateLastAccessed
	Returns the date and time when a specified folder was last accessed

	DateLastModified
	Returns the date and time when a specified folder was last modified

	Drive
	Returns the drive letter of the drive where the specified folder resides

	IsRootFolder
	Returns true if a folder is the root folder and false if not

	Name
	Sets or returns the name of a specified folder

	ParentFolder
	Returns the parent folder of a specified folder

	Path
	Returns the path for a specified folder

	ShortName
	Returns the short name of a specified folder (the 8.3 naming convention)

	ShortPath
	Returns the short path of a specified folder (the 8.3 naming convention)

	Size
	Returns the size of a specified folder

	Type
	Returns the type of a specified folder

Methods
	Method
	Description

	Copy
	Copies a specified folder from one location to another

	Delete
	Deletes a specified folder

	Move
	Moves a specified folder from one location to another

	CreateTextFile
	Creates a new text file in the specified folder and returns a TextStream object to access the file

Lesson 25: ASP Dictionary Object

The Dictionary object is used to store information in name/value pairs (referred to as key and item)

Examples
Does a specified key exist?
This example demonstrates how to first create a Dictionary object, and then use the Exists method to check if a specified key exists.
Return an array of all items
This example demonstrates how to use the Items method to return an array of all the items.
Return an array of all keys
This example demonstrates how to use the Keys method to return an array of all the keys.
Return the value of an item
This example demonstrates how to use the Item property to return the value of an item.
Set a key
This example demonstrates how to use the Key property to set a key in a Dictionary object.
Return the number of key/item pairs
This example demonstrates how to use the Count property to return the number of key/item pairs.

The Dictionary Object
The Dictionary object is used to store information in name/value pairs (referred to as key and item). The Dictionary object might seem similar to Arrays, however, the Dictionary object is a more desirable solution to manipulate related data.
Comparing Dictionaries and Arrays:
· Keys are used to identify the items in a Dictionary object

· You do not have to call ReDim to change the size of the Dictionary object

· When deleting an item from a Dictionary, the remaining items will automatically shift up

· Dictionaries cannot be multidimensional, Arrays can

· Dictionaries have more built-in functions than Arrays

· Dictionaries work better than arrays on accessing random elements frequently

· Dictionaries work better than arrays on locating items by their content

The following example creates a Dictionary object, adds some key/item pairs to it, and retrieves the item value for the key gr:
	<%

Dim d

Set d=Server.CreateObject("Scripting.Dictionary")

d.Add "re","Red"

d.Add "gr","Green"

d.Add "bl","Blue"

d.Add "pi","Pink"

Response.Write("The value of key gr is: " & d.Item("gr"))

%>
Output:
The value of key gr is: Green

The Dictionary object's properties and methods are described below:
Properties
	Property
	Description

	CompareMode
	Sets or returns the comparison mode for comparing keys in a Dictionary object

	Count
	Returns the number of key/item pairs in a Dictionary object

	Item
	Sets or returns the value of an item in a Dictionary object

	Key
	Sets a new key value for an existing key value in a Dictionary object

Methods
	Method
	Description

	Add
	Adds a new key/item pair to a Dictionary object

	Exists
	Returns a Boolean value that indicates whether a specified key exists in the Dictionary object

	Items
	Returns an array of all the items in a Dictionary object

	Keys
	Returns an array of all the keys in a Dictionary object

	Remove
	Removes one specified key/item pair from the Dictionary object

	RemoveAll
	Removes all the key/item pairs in the Dictionary object

Lesson 26: ASP AdRotator Component

Examples
Simple AdRotator Example
This example shows how to use the AdRotator component to display a different advertisement image, each time a user visits or refreshes the page.
AdRotator - The Images are Hyperlinks
This example shows how to use the AdRotator component to display a different advertisement image, each time a user visits or refreshes the page. In addition, the images are hyperlinks.

ASP AdRotator Component
The ASP AdRotator component creates an AdRotator object that displays a different image each time a user enters or refreshes a page. A text file includes information about the images.
Syntax
	<%
set adrotator=server.createobject("MSWC.AdRotator")
adrotator.GetAdvertisement("textfile.txt")
%>

Example
Assume we have a file called "banners.asp". It looks like this:
	<html>
<body>
<%
set adrotator=Server.CreateObject("MSWC.AdRotator")
response.write(adrotator.GetAdvertisement("ads.txt"))
%>
</body>
</html>

The file "ads.txt" looks like this:
	*
Neosoft.gif
http://www.Neosoft.com/
Visit Neosoft
80
microsoft.gif
http://www.microsoft.com/
Visit Microsoft
20

The lines below the asterisk in the file "ads.txt" specifies the images to be displayed, the hyperlink addresses, the alternate text (for the images), and the display rates in percent of the hits. We see that the Neosoft image will be displayed for 80 % of the hits and the Microsoft image will be displayed for 20 % of the hits in the text file above.
Note: To get the links to work when a user clicks on them, we will have to modify the file "ads.txt" a bit:
	REDIRECT banners.asp
*
Neosoft.gif
http://www.Neosoft.com/
Visit Neosoft
80
microsoft.gif
http://www.microsoft.com/
Visit Microsoft
20

The redirection page (banners.asp) will now receive a querystring with a variable named URL containing the URL to redirect to.
Note: To specify the height, width, and border of the image, you can insert the following lines under REDIRECT:
	REDIRECT banners.asp
WIDTH 468
HEIGHT 60
BORDER 0
*
Neosoft.gif
...
...

The last thing to do is to add some lines of code to the "banners.asp" file:
	<%
url=Request.QueryString("url")
If url<>"" then Response.Redirect(url)
%>
<html>
<body>
<%
set adrotator=Server.CreateObject("MSWC.AdRotator")
response.write(adrotator.GetAdvertisement("textfile.txt"))
%>
</body>
</html>

That's all!!

Properties
	Property
	Description
	Example

	Border
	Specifies the size of the borders around the advertisement
	<%
set adrot=Server.CreateObject("MSWC.AdRotator")
adrot.Border="2"
Response.Write(adrot.GetAdvertisement("ads.txt"))
%>

	Clickable
	Specifies whether the advertisement is a hyperlink
	<%
set adrot=Server.CreateObject("MSWC.AdRotator")
adrot.Clickable=false
Response.Write(adrot.GetAdvertisement("ads.txt"))
%>

	TargetFrame
	Name of the frame to display the advertisement
	<%
set adrot=Server.CreateObject("MSWC.AdRotator")
adrot.TargetFrame="target='_blank'"
Response.Write(adrot.GetAdvertisement("ads.txt"))
%>

Methods
	Method
	Description
	Example

	GetAdvertisement
	Returns HTML that displays the advertisement in the page
	<%
set adrot=Server.CreateObject("MSWC.AdRotator")
Response.Write(adrot.GetAdvertisement("ads.txt"))
%>

Lesson 27: ASP Browser Capabilities Component

Examples
The Browser Capabilities Component
This example shows how to determine the type, capabilities and version number of each browser visiting your site.

ASP Browser Capabilities Component
The ASP Browser Capabilities component creates a BrowserType object that determines the type, capabilities and version number of each browser that visits your site.
When a browser connects to a server, an HTTP User Agent Header is also sent to the server. This header contains information about the browser (like browser type and version number). The BrowserType object then compares the information in the header with information in a file on the server called "Browscap.ini".
If there is a match between the browser type and version number sent in the header and the information in the "Browsercap.ini" file, you can use the BrowserType object to list the properties of the matching browser. If there is no match for the browser type and version number in the Browscap.ini file, it will set every property to "UNKNOWN".
Syntax
	<%
Set MyBrow=Server.CreateObject("MSWC.BrowserType")
%>

The example below creates a BrowserType object in an ASP file, and displays a table showing some of the capabilities of the current browser:
	<html>

<body>
<%

Set MyBrow=Server.CreateObject("MSWC.BrowserType")

%>
<table border="1" width="100%">

<tr>

<th>Client OS</th>

<th><%=MyBrow.platform%></th>

</tr><tr>

<td >Web Browser</td>

<td ><%=MyBrow.browser%></td>

</tr><tr>

<td>Browser version</td>

<td><%=MyBrow.version%></td>

</tr><tr>

<td>Frame support?</td>

<td><%=MyBrow.frames%></td>

</tr><tr>

<td>Table support?</td>

<td><%=MyBrow.tables%></td>

</tr><tr>

<td>Sound support?</td>

<td><%=MyBrow.backgroundsounds%></td>

</tr><tr>

<td>Cookies support?</td>

<td><%=MyBrow.cookies%></td>

</tr><tr>

<td>VBScript support?</td>

<td><%=MyBrow.vbscript%></td>

</tr><tr>

<td>JavaScript support?</td>

<td><%=MyBrow.javascript%></td>

</tr>

</table>
</body>

</html>

Output:
	Client OS
	WinNT

	Web Browser
	IE

	Browser version
	5.0

	Frame support?
	True

	Table support?
	True

	Sound support?
	True

	Cookies support?
	True

	VBScript support?
	True

	JavaScript support?
	True

The Browscap.ini File
The "Browsercap.ini" file is used to declare properties and to set default values for browsers.
This section is not a tutorial on how to maintain "Browsercap.ini" files, it only shows you the basics; so you get an idea what a "Browsercap.ini" file is all about.
The "Browsercap.ini" file can contain the following:
	[;comments]

[HTTPUserAgentHeader]

[parent=browserDefinition]

[property1=value1]

[propertyN=valueN]

[Default Browser Capability Settings]

[defaultProperty1=defaultValue1]

[defaultPropertyN=defaultValueN]

	Parameter
	Description

	comments
	Optional. Any line that starts with a semicolon are ignored by the BrowserType object

	HTTPUserAgentHeader
	Optional. Specifies the HTTP User Agent header to associate with the browser-property value statements specified in propertyN. Wildcard characters are allowed

	browserDefinition
	Optional. Specifies the HTTP User Agent header-string of a browser to use as the parent browser. The current browser's definition will inherit all of the property values declared in the parent browser's definition

	propertyN
	Optional. Specifies the browser properties. The following table lists some possible properties:

· ActiveXControls - Support ActiveX® controls?

· Backgroundsounds - Support background sounds?

· Cdf - Support Channel Definition Format for Webcasting?

· Tables - Support tables?

· Cookies - Support cookies?

· Frames - Support frames?

· Javaapplets - Support Java applets?

· Javascript - Supports JScript?

· Vbscript - Supports VBScript?

· Browser - Specifies the name of the browser

· Beta - Is the browser beta software?

· Platform - Specifies the platform that the browser runs on

· Version - Specifies the version number of the browser

	valueN
	Optional. Specifies the value of propertyN. Can be a string, an integer (prefix with #), or a Boolean value

	defaultPropertyN
	Optional. Specifies the name of the browser property to which to assign a default value if none of the defined HTTPUserAgentHeader values match the HTTP User Agent header sent by the browser

	defaultValueN
	Optional. Specifies the value of defaultPropertyN. Can be a string, an integer (prefix with #), or a Boolean value

A "Browsercap.ini" file might look something like this:
	;IE 5.0

[IE 5.0]

browser=IE

Version=5.0

majorver=#5

minorver=#0

frames=TRUE

tables=TRUE

cookies=TRUE

backgroundsounds=TRUE

vbscript=TRUE

javascript=TRUE

javaapplets=TRUE

ActiveXControls=TRUE

beta=False
;DEFAULT BROWSER

[*]

browser=Default

frames=FALSE

tables=TRUE

cookies=FALSE

backgroundsounds=FALSE

vbscript=FALSE

javascript=FALSE

Lesson 28: ASP Content Linking Component

Examples
The Content Linking Component
This example builds a table of contents.
The Content Linking Component 2
The example uses the Content Linking Component to navigate between the pages in a text file.

ASP Content Linking Component
The ASP Content Linking component is used to create a quick and easy navigation system!
The Content Linking component returns a Nextlink object that is used to hold a list of Web pages to be navigated.
Syntax
	<%
Set nl=Server.CreateObject("MSWC.NextLink")
%>

First we create a text file - "links.txt". This file contains the pages to be navigated. The pages must be listed in the same order you want them to be displayed, and it also must contain a description for each file name (use the tab key to separate file name from description). Note: If you want to add a page to the list or change the order of the pages in the list; all you have to do is to modify the text file! The navigation will automatically be correct!
"links.txt":
	asp_intro.asp ASP Intro
asp_syntax.asp ASP Syntax
asp_variables.asp ASP Variables
asp_procedures.asp ASP Procedures

On each of the pages listed above, put one line of code: <!-- #include file="nlcode.inc"-->. This line will include the code below on every page listed in "links.txt" and the navigation will work.
"nlcode.inc":
	<%

'Use the Content Linking Component

'to navigate between the pages listed

'in links.txt
dim nl

Set nl=Server.CreateObject("MSWC.NextLink")

if (nl.GetListIndex("links.txt")>1) then

 Response.Write("<a href='" & nl.GetPreviousURL("links.txt"))

 Response.Write("'>Previous Page")

end if

Response.Write("<a href='" & nl.GetNextURL("links.txt"))

Response.Write("'>Next Page")

%>

The ASP Content Linking Component's methods are described below:
Methods
	Method
	Description
	Example

	GetListCount
	Returns the number of items listed in the Content Linking List file
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetListCount("links.txt")
Response.Write("There are ")
Response.Write(c)
Response.Write(" items in the list")
%>

Output:
There are 4 items in the list

	GetListIndex
	Returns the index number of the current item in the Content Linking List file. The index number of the first item is 1. 0 is returned if the current page is not in the Content Linking List file
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetListIndex("links.txt")
Response.Write("Item number ")
Response.Write(c)
%>

Output:
Item number 3

	GetNextDescription
	Returns the text description of the next item listed in the Content Linking List file. If the current page is not found in the list file it returns the text description of the last page on the list
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetNextDescription("links.txt")
Response.Write("Next ")
Response.Write("description is: ")
Response.Write(c)
%>

Next description is: ASP Variables

	GetNextURL
	Returns the URL of the next item listed in the Content Linking List file. If the current page is not found in the list file it returns the URL of the last page on the list
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetNextURL("links.txt")
Response.Write("Next ")
Response.Write("URL is: ")
Response.Write(c)
%>

Next URL is: asp_variables.asp

	GetNthDescription
	Returns the description of the Nth page listed in the Content Linking List file
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetNthDescription("links.txt",3)
Response.Write("Third ")
Response.Write("description is: ")
Response.Write(c)
%>

Third description is: ASP Variables

	GetNthURL
	Returns the URL of the Nth page listed in the Content Linking List file
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetNthURL("links.txt",3)
Response.Write("Third ")
Response.Write("URL is: ")
Response.Write(c)
%>

Third URL is: asp_variables.asp

	GetPreviousDescription
	Returns the text description of the previous item listed in the Content Linking List file. If the current page is not found in the list file it returns the text description of the first page on the list
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetPreviousDescription("links.txt")
Response.Write("Previous ")
Response.Write("description is: ")
Response.Write(c)
%>

Previous description is: ASP Variables

	GetPreviousURL
	Returns the URL of the previous item listed in the Content Linking List file. If the current page is not found in the list file it returns the URL of the first page on the list
	<%
dim nl,c
Set nl=Server.CreateObject("MSWC.NextLink")
c=nl.GetPreviousURL("links.txt")
Response.Write("Previous ")
Response.Write("URL is: ")
Response.Write(c)
%>

Previous URL is: asp_variables.asp

Lesson 29: ASP Content Rotator (ASP 3.0)

Examples
The Content Rotator Component
This component displays a different HTML content string each time a user visits or refreshes the page.

ASP Content Rotator Component
The ASP Content Rotator component creates a ContentRotator object that displays a different HTML content string each time a user enters or refreshes a page. A text file, called the Content Schedule File, includes the information about the content strings.
The content strings can contain HTML tags so you can display any type of content that HTML can represent: text, images, colors, or hyperlinks.
Syntax
	<%
Set cr=Server.CreateObject("MSWC.ContentRotator")
%>

The following example displays a different content each time a user views the Web page. Create a text file named "textads.txt" in your default Web Site folder, in a subfolder called text.
"textads.txt":
	%% #1
This is a great day!!

%% #2
<h1>Smile</h1>

%% #3

%% #4
Here's a link.

Notice the #number at the beginning of each content string. This number is an optional parameter that indicates the relative weight of the HTML content string. In this example, the Content Rotator will display the first content string one-tenth of the time, the second string two-tenths of the time, the third string three-tenths of the time, and the fourth string four-tenths of the time.
Then, create an ASP file, and insert the following code:
	<html>
<body>

<%
set cr=server.createobject("MSWC.ContentRotator")
response.write(cr.ChooseContent("text/textads.txt"))
%>

</body>
</html>

The ASP Content Rotator Component's methods are described below:
Methods
	Method
	Description
	Example

	ChooseContent
	Gets and displays a content string
	<%
dim cr
Set cr=Server.CreateObject("MSWC.ContentRotator")
response.write(cr.ChooseContent("text/textads.txt"))
%>

Output:

[image: image1]

	GetAllContent
	Retrieves and displays all of the content strings in the text file
	<%
dim cr
Set cr=Server.CreateObject("MSWC.ContentRotator")
response.write(cr.GetAllContent("text/textads.txt"))
%>

Output:

This is a great day!!

Lesson 30: ASP Quick Reference

ASP Quick Reference from Neosoft. Print it, and fold it in your pocket.

Basic Syntax
ASP scripts are surrounded by <% and %>. To write some output to a browser:
<html>
<body>
<% response.write("Hello World!") %>
</body>
</html>
The default language in ASP is VBScript. To use another scripting language, insert a language specification at the top of the ASP page:
<%@ language="javascript" %>
<html>
<body>
<%
....
%>
Forms and User Input
Request.QueryString is used to collect values in a form with method="get". Information sent from a form with the GET method is visible to everyone (it will be displayed in the browser's address bar) and has limits on the amount of information to send.
Request.Form is used to collect values in a form with method="post". Information sent from a form with the POST method is invisible to others and has no limits on the amount of information to send.
ASP Cookies
A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's computer. Each time the same computer requests for a page with a browser, it will send the cookie too.
The Response.Cookies command is used to create cookies:
<%
Response.Cookies("firstname")="Alex"
Response.Cookies("firstname").Expires="May 10,2002"
%>
Note: The Response.Cookies command must appear BEFORE the <html> tag!
The "Request.Cookies" command is used to retrieve a cookie value:
<%
fname=Request.Cookies("firstname")
response.write("Firstname=" & fname)
%>
Including Files
You can insert the content of one ASP file into another ASP file before the server executes it, with the #include directive. The #include directive is used to create functions, headers, footers, or elements that will be reused on multiple pages
Syntax:
<!--#include virtual="somefile.inc"-->
or
<!--#include file ="somefile.inc"-->
Use the virtual keyword to indicate a path beginning with a virtual directory. If a file named "header.inc" resides in a virtual directory named /html, the following line would insert the contents of "header.inc":
<!-- #include virtual ="/html/header.inc" -->
Use the file keyword to indicate a relative path. A relative path begins with the directory that contains the including file. If you have a file in the html directory, and the file "header.inc" resides in html\headers, the following line would insert "header.inc" in your file:
<!-- #include file ="headers\header.inc" -->
Use the file keyword with the syntax (..\) to include a file from a higher-level directory.
Global.asa
The Global.asa file is an optional file that can contain declarations of objects, variables, and methods that can be accessed by every page in an ASP application.
Note: The Global.asa file must be stored in the root directory of the ASP application, and each application can only have one Global.asa file.
The Global.asa file can contain only the following:
· Application events
· Session events
· <object> declarations
· TypeLibrary declarations
· the #include directive

Application and Session Events
In Global.asa you can tell the application and session objects what to do when the application/session starts and what to do when the application/session ends. The code for this is placed in event handlers. Note: We do not use <% and %>, to insert scripts in the Global.asa file, we have to put the subroutines inside the HTML <script> tag:
<script language="vbscript" runat="server">
sub Application_OnStart
 ' some code
end sub
sub Application_OnEnd
 ' some code
end sub
sub Session_OnStart
 ' some code
end sub
sub Session_OnEnd
 ' some code
end sub
</script>
<object> Declarations
It is also possible to create objects with session or application scope in Global.asa by using the <object> tag. Note: The <object> tag should be outside the <script> tag!
Syntax:
<object runat="server" scope="scope" id="id"
{progid="progID"|classid="classID"}>
.......
</object>
TypeLibrary Declarations
A TypeLibrary is a container for the contents of a DLL file corresponding to a COM object. By including a call to the TypeLibrary in the Global.asa file, the constants of the COM object can be accessed, and errors can be better reported by the ASP code. If your Web application relies on COM objects that have declared data types in type libraries, you can declare the type libraries in Global.asa.
Syntax:
 <!--METADATA TYPE="TypeLib"
file="filename"
uuid="typelibraryuuid"
version="versionnumber"
lcid="localeid"
-->
The Session Object
The Session object is used to store information about, or change settings for a user session. Variables stored in the Session object hold information about one single user, and are available to all pages in one application.
Collections
· Contents - Holds every item added to the session with script commands

· StaticObjects - Holds every object added to the session with the <object> tag, and a given session

· Contents.Remove(item/index) - Deletes an item from the Contents collection

· Contents.RemoveAll() - Deletes every item from the Contents collection

Properties
· CodePage - Sets the code page that will be used to display dynamic content

· LCID - Sets the locale identifier that will be used to display dynamic content

· SessionID - Returns the session id

· Timeout - Sets the timeout for the session

Method
· Abandon - Kills every object in a session object

Application Object
A group of ASP files that work together to perform some purpose is called an application. The Application object in ASP is used to tie these files together. All users share one Application object. The Application object should hold information that will be used by many pages in the application (like database connection information).
Collections
· Contents - Holds every item added to the application with script commands

· StaticObjects - Holds every object added to the application with the <object> tag

· Contents.Remove - Deletes an item from a collection

· Contents.RemoveAll - Deletes every item from a collection

Methods
· Lock - Prevents a user from changing the application object properties

· Unlock - Allows a user to change the application object properties

The Response Object
The Response Object is used to send output to the user from the server.
Collection
· Cookies(name) - Sets a cookie value. If the cookie does not exist, it will be created, and take the value that is specified

Properties
· Buffer - Whether to buffer the output or not. When the output is buffered, the server will hold back the response until all of the server scripts have been processed, or until the script calls the Flush or End method. If this property is set, it should be before the <html> tag in the ASP file

· CacheControl - Sets whether proxy servers can cache the output or not. When set to Public, the output can be cached by a proxy server

· Charset(charset_name) - Sets the name of the character set (like "ISO8859-1") to the content type header

· ContentType - Sets the HTTP content type (like "text/html", "image/gif", "image/jpeg", "text/plain"). Default is "text/html"

· Expires - Sets how long a page will be cached on a browser before it expires

· ExpiresAbsolute - Sets a date and time when a page cached on a browser will expire

· IsClientConnected - Checks if the client is still connected to the server

· Pics(pics_label) - Adds a value to the pics label response header

· Status - Specifies the value of the status line

Methods
· AddHeader(name, value) - Adds an HTML header with a specified value

· AppendToLog string - Adds a string to the end of the server log entry

· BinaryWrite(data_to_write) - Writes the given information without any character-set conversion

· Clear - Clears the buffered output. Use this method to handle errors. If Response.Buffer is not set to true, this method will cause a run-time error

· End - Stops processing the script, and return the current result

· Flush - Sends buffered output immediately. If Response.Buffer is not set to true, this method will cause a run-time error

· Redirect(url) - Redirects the user to another url

· Write(data_to_write) - Writes a text to the user

Request Object
When a browser asks for a page from a server, it is called a request. The Request Object is used to get information from the user.
Collection
· ClientCertificate - Holds field values stored in the client certificate

· Cookies(name) - Holds cookie values

· Form(element_name) - Holds form (input) values. The form must use the post method

· QueryString(variable_name) - Holds variable values in the query string

· ServerVariables(server_variable) - Holds server variable values

Property
· TotalBytes - Holds the total number of bytes the client is sending in the body of the request

Method
· BinaryRead - Fetches the data that is sent to the server from the client as part of a post request

Server Object
The Server Object is used to access properties and methods on the server.
Property
· ScriptTimeout - Sets how long a script can run before it is terminated

Method
· CreateObject(type_of_object) - Creates an instance of an object

· Execute(path) - Executes an ASP file from inside another ASP file. After executing the called ASP file, the control is returned to the original ASP file

· GetLastError() - Returns an ASPError object that will describe the error that occurred

· HTMLEncode(string) - Applies HTML encoding to a string

· MapPath(path) - Maps a relative or virtual path to a physical path

· Transfer(path) - Sends all of the state information to another ASP file for processing. After the transfer, procedural control is not returned to the original ASP file

· URLEncode(string) - Applies URL encoding rules to a string

Lesson 31: You Have Learned ASP, Now What?

ASP Summary
This tutorial has taught you how to add server-side scripts to your web site, to make your web site more dynamic and interactive.
You have learned how to dynamically edit, change or add any content of a web page, respond to data submitted from HTML forms, access any data or databases and return the results to a browser, customize a web page to make it more useful for individual users.

Now You Know ASP, What's Next?
The next step is to learn SQL and ADO.
SQL
SQL is a standard computer language for accessing and manipulating database systems.
SQL statements are used to retrieve and update data in a database. SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle, Sybase, and other database systems.
If you want to learn more about SQL, please visit our SQL tutorial.
ADO
ADO is a programming interface to access data in a database from a web site.
ADO uses SQL to query data in a database.
If you want to learn more about ADO, please visit our ADO tutorial.
